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Letters

Comments on and Extensions of “A Note on the
Application of Edge-Elements for Modeling

Three-Dimensional Inhomogeneously-
Filled Cavities”

David B. Davidson

Abstract—Some comments are made on the above paper1 and a typo-
graphical error is corrected. Eigenvalue solutions for three-dimensional
(3-D) cavities computed using an independently implemented finite-
element code using edge-based elements are reported as verification of the
tabulated formulas in this paper. The question of “trivial” eigenvalues is
briefly addressed. The extension of the tabulated formulas to diagonally
anisotropic media is presented; it is shown to be very straightforward.
Such media currently have significant applications as artificial absorbers
in finite-element meshes.

Index Terms—Artificial absorbers, diagonally anisotropic media, edge-
based elements, finite-element method.

I. INTRODUCTION

Differential-equation-based methods—especially the finite-
difference time-domain (FDTD) method and finite-element
method (FEM)—have achieved widespread acceptance in the
microwave community for device simulation. The simplicity of
the FDTD method lends itself to straightforward implementation;
implementation of the FEM is somewhat more challenging. Explicit
formulas for the[S] and [T ] matrices for three-dimensional (3-D)
edge-based elements are very useful in such an implementation,
and are provided in this most useful paper,1 which is surprisingly
rarely cited by recent texts on the subject [1]–[3]. The formulas
involve straightforward vector operations on edge and area vectors
describing the edges and faces of the finite-element mesh.

The aim of this paper is threefold:

1) to correct a minor typographical error in the above paper,1

and to provide verification of the expressions therein via an
independent implementation;

2) to illustrate the accuracy of eigenvalue solution readily achiev-
able and to comment on the “trivial” eigenvalues alluded to in
the paper;

3) to give explicit formulas for the extensions to the case of
anisotropic media (both electric and magnetic) with diagonal
permittivity/permeability tensors.

Such materials are increasingly used to implement artificial (fictitious)
absorbers, and are also encountered in microwave integrated circuits,
and the required extensions to the tabulated formulas in the above
paper1 are very straightforward. Although the above paper1 was
published some time back, the material contained therein and the
extensions to be outlined remain very topical; hence, the presentation
of this paper.
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TABLE I
EIGHT LOWEST NONTRIVIAL EIGENVALUES (k0, cm�1), FOR A

1 cm� 0.5 cm� 0.75 cm UNLOADED RECTANGULAR CAVITY

II. CORRECTIONS

The above paper1 contains a minor typographical error. In the
expression forT31 of (19), the entry should read

I00 � I01 � I03 + 2I13 (1)

and not

I00 � I01 � I03 + 2I12: (2)

Min et al. correct this in [4].
Similar formulas are also given in Jin’s text [1]; the expressions

given in the above paper1 are essentially the same as those in Jin [1,
pp. 256–257]. Note that Jin’s expressions for[T15], [T25], [T35], [T45],
and [T56] (which, by symmetry, are the same as[T51]; � � � ; [T65])
contain opposite signs to the above paper1 due to the direction of
Jin’s edge five being opposite to that of Lee and Mittra. (From the
errata, the firstf34 in the last equation of [1, p. 256] should readf13).

The term[S6; 3] in (18) of the above paper1 is somewhat unclear,
presumably due to a printing error. It should read~t0; 1 � ~t1; 2.

III. N UMERICAL DETERMINATION OF EIGENVALUES WITH THE FEM

This author has independently developed a program using the
tabulated results in the above paper,1 and has repeated various
numerical experiments reported in the literature on the numerical
determination of eigenvalues with the FEM. A brief summary will
be presented. A study of an unloaded cavity reported by Jin [1,
Sec. 8.4] has been performed; results are given in Table I for the
eight lowest nontrivial eigenvalues for a 1 cm� 0.5 cm� 0.75 cm
unloaded rectangular cavity, using edge-based tetrahedral elements.
Mode numbering follows Jin [1, p. 260, Table 8.3]. The results
shown were generated with a mesh with 351 degrees of freedom.
(The nominal side length was 0.2 cm, corresponding to around ten
edges per wavelength at the lowest resonant frequency of the cavity.)
The agreement between analytical results (taken from [1, p. 260])
and computed results is quite satisfactory. Note that some of the
eigenvalues are degenerate (e.g.,TM111 andTE111); the code does
a reasonable approximation of these, but with nonidentical values.

Further confidence in the author’s implementation, and, hence, the
explicit formulas in the above paper1 derives from results for the rect-
angular loaded cavity reported in the above paper1; results are given
in Table II. The differences between the lowest nontrivial eigenvalues
computed using these completely independently implemented codes
(albeit using the same theory) is around 0.017%.
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TABLE II
LOWEST NONTRIVIAL EIGENVALUE ka. EXACT/MEASURED DATA

FROM THE ABOVE PAPER.1 ERROR REFERS TOAUTHOR’S

CODE WITH RESPECT TOEXACT/MEASURED DATA

The meshes used in these studies were generated using Field
Analysis Modeller (FAM), Version 4, a product of FEGS Ltd,
Oakington, U.K. (This powerful commercial meshing program also
has an integrated graphical post-processor). Packages such as these
are crucial when developing a 3-D FEM program in a research envi-
ronment, since developing robust 3-D meshers is a very challenging
problem.

A point often not clearly made in the FEM literature on eigen-
value analysis is that a potentially large number of eigenvalues are
computed by the eigenvalue routine, which must be rejected by
the analyst. These are the approximations of the zero eigenvalues,
as expected [5], [6]. Exactly how edge-based elements work in
suppressing spurious modes has been the topic of much debate, but
the emerging consensus (as expressed in [5] and [6]) is that they do
a better job of approximating the zero-frequency eigenvalues, and
not because the elements are divergence-free (which is, in any case,
only true within the elements—and even this, only for lower order
noncurvilinear elements).

Using edge-based elements, these approximations are—for prob-
lems such as those above—easily identified; for the problems reported
above, the largest “zero-approximate” eigenvalue was typically two
orders of magnitude smaller than the first desired eigenvalue. (For
the unloaded cavity with the specific mesh used, the largest “trivial”
eigenvalue—the 29th—was 0.027 98. This is a function of mesh size
and type). This is implied in the literature by the term “lowestnontriv-
ial eigenvalue.” Peterson tabulates the number of zero eigenvalues for
a particular analysis in [5, Table I]. It is actually possible to predict

the number expected (see [7] in this regard), although this has not
been attempted by this author.

IV. EXTENSION TO DIAGONALLY ANISOTROPICMEDIA

The extension to anisotropic media in general is, unfortunately,
somewhat tedious; this author has derived the case for a permittivity
tensor with only diagonal,�xy and�yx entries, and the result is indeed
lengthy. However, the extension todiagonallyanisotropic media—a
topic of current interest for fictitious absorber application, e.g., [8], as
well as for uniaxial anisotropic materials, as encountered in integrated
microwave circuits (see [1, p. 208] for some examples)—turns out
to be very straightforward and will now be outlined. Several authors
have published work based on this (e.g., [9]), and Minet al. [4]
published formulas for anisotropicdielectric media, but other than
this reference (which only handles dielectric anisotropy), explicit
formulas are not available in the literature, to the best of this
author’s knowledge. (For anisotropicwaveguides, the assumption of
e�
z propagation permits an efficient formulation involving two-
dimensional discretization of the cross section [10].)

For an anisotropic material withsymmetricpermittivity and perme-
ability tensors, real or complex (i.e., potentially lossy), the functional
is (by analogy with [1, p. 221], note that the1=�r in [1, eq. (7.87)]
is an error, present only in the first printing, or directly from [9, eq.
(7)] with the last boundary integral term set to zero)

F (~E) =



[(r� ~E) � [�r]
�1

� (r� ~E)�k20 ~E � [�r] � ~E] d
 (3)

[�r] and [�r] are the permittivity and permeability
matrices/tensors/dyadics. Note that the� operation must now
be interpreted as a tensor/dyadic operation. Jin includes a factor
of 1/2 in the functional [1]; Sun and Balanis do not [9]. In this
case, either form is acceptable, since the 1/2 factors out when the
functional is minimized. (For permittivity and permeability tensors
with Hermitian symmetry, the functional must be modified: see
[1, p. 221]).

[S]e =
1

9V

~t2; 3 � ~t02; 3
�~t1; 3 � ~t02; 3 ~t1; 3 � ~t01; 3
~t1; 2 � ~t02; 3 �~t1; 2 � ~t01; 3 ~t1; 2 � ~t01; 2
~t0; 3 � ~t02; 3 �~t0; 3 � ~t01; 3 ~t0; 3 � ~t01; 2 ~t0; 3 � ~t00; 3

�~t0; 2 � ~t02; 3 ~t0; 2 � ~t01; 3 �~t0; 2 � ~t01; 2 �~t0; 2 � ~t00; 3 ~t0; 2 � ~t00; 2
~t0; 1 � ~t02; 3 �~t0; 1 � ~t01; 3 ~t0; 1 � ~t01; 2 ~t0; 1 � ~t00; 3 �~t0; 1 � ~t00; 2 ~t0; 1 � ~t00; 1

(7)

[T ]e =
1

180V

2(I 000
�I 001 + I 011)

I 000 � I 001 2(I 000�
�I 002 + 2I 012 I 002 + I 022)

I 000 � I 001 I 000 � I 002 2(I 000�
�I 003 + 2I 013 �I 003 + 2I 023 I 003 + I 033)

I 001 � I 011 2I 001 � I 012 I 001 � I 013 2(I 011�
�2I 002 + I 012 �I 002 + I 022 �I 002 + I 023 I 012 + I 022)

I 001 � I 011 I 001 � I 012 2I 001 � I 013 I 011 � I 012 2(I 011�
�2I 003 + I 013 �I 003 + I 023 �I 003 + I 033 �I 013 + 2I 023 I 013 + I 033)

I 002 � I 012 I 002 � I 022 2I 002 � I 023 I 012 � I 022 2I 012 � I 023 2(I 022�
�I 003 + I 013 �2I 003 + I 023 �I 003 + I 033 �2I 013 + I 023 �I 013 + I 033 I 023 + I 033)

(8)
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With diagonal permittivity and permeability tensors given by

[�r] =
�r 0 0
0 �r 0
0 0 �r

(4)

[�r] =
�r 0 0
0 �r 0
0 0 �r

(5)

all that is required are the following modifications. In the evaluation
of the [S] matrix elements, all the dot products of the form~ti; j �

~tk; l
must be replaced by~ti; j �

~t0k; l with

~t0k; l =
1

�r

tk; l +
1

�r

tk; l +
1

�r

tk; l = [�r]
�1

�

~tk; 1 (6)

where � is now the conventional matrix–vector inner product. Note
also that the1=�r term in (18) of the above paper1 must be removed
since it is now effectively included in the dot product. The matrix
retains its symmetry. The lower half and diagonal of the[S] matrix
is shown in (7), at the bottom of the previous page.

For the [T ] matrix elements, Minet al. [4] provide the required
expressions, but since this conference publication may not be readily
accessible, the extension will be given here. (It was derived inde-
pendently by this author.) Terms of the formIij = ~Ai �

~Aj must
be replaced byI 0ij = ~Ai �

~A0

j with ~A0

j = [�r Aj + �r Aj +

�r Aj ] = [�r] �

~Aj . The �r term in (19) of the above paper1 must
also be removed since it is now included inI 0ij . The lower half and
diagonal of the[T ] matrix is shown in (8), at the bottom of the
previous page.
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Comments on “Transitional Combline/Evanescent-Mode
Microwave Filters”

Itzhak Shapir and Victor Sharir

In the above paper,1 Levy et al. refer to the phenomenon of
combline-filter bandwidth expansion (i.e., practical bandwidth versus
theoretical TEM-analyzed bandwidth). Levyet al. explain that this
phenomenon is mainly caused due to evanescent waveguide modes
propagating through the structure, affecting the overall coupling
coefficients and bandwidth. This explanation, known for many years,
is only one among other explanations such as coupling between
nonadjacent resonators, also known for many years. These expla-
nations and derived equivalent models are not fully compliant with
practical results and may be applicable only in limited frequencies
and structural dimension.

In paragraph five of the above-paper,1 Levy et al. claim to have
investigated and disprove an explanation suggested by us which was
recently published [1]. This explanation is based on deviation from
quasi-static two-dimensional cross-sectional TEM-derived coupling
coefficients, mainly caused due to the proximity of a ground plane
to the open ends of the resonator array, significantly affecting the
overall bandwidth. The effect of this ground plane, usually used to
carry tuning elements, is not fully represented in traditional equivalent
models and design formulas for combline-filter design and analysis.

However, Levy et al. investigated a structure with a large iris
between the resonators, which is significantly different than the
classic structure we have investigated. Therefore, the “disproval” of
our explanation by Levyet al. has no practical validation.

Moreover, it is expected that evanescent waveguide modes should
cause similar effects in interdigital filters, yet these filters’ perfor-
mance comply with their TEM analysis, a fact Levyet al. admit to
be unable to explain in paragraph six of the above paper.1 According
to our explanation, this fact is obvious since in interdigital filters
the resonator open ends hardly participate in the overall coupling.
In addition, Levy et al. do not explain the dependence of that
phenomenon on the spacing between resonators in paragraph four
of the above paper,1 while our explanation is consistent with this

Manuscript received March 23, 1998.
The authors are with the Microwave and MM-Wave Department, RAFAEL,

Haifa 31021, Israel, and also with GALORMIC, Tivon 36081, Israel.
Publisher Item Identifier S 0018-9480(98)06159-6.
1R. Levy, H.-W. Yao, and K. A. Zaki,IEEE Trans. Microwave Theory

Tech., vol. 45, no. 12, pp. 2094–2099, Dec. 1997.

0018–9480/98$10.00 1998 IEEE


